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Fractional Cahn-Hilliard Equation(s)
Analysis, Properties and Approximation

Mark Ainsworth∗ and Zhiping Mao, Division of Applied Mathematics, Brown University,
Providence RI, USA

The classical Cahn-Hilliard equation [1] is a non-linear, fourth order in space, parabolic par-
tial differential equation which is often used as a diffuse interface model for the phase separation
of a binary alloy. Despite the widespread adoption of the model, there are good reasons for
preferring models in which fractional spatial derivatives appear [2,3]. We consider two such
Fractional Cahn-Hilliard equations (FCHE).

The first [4] corresponds to considering a gradient flow of the free energy functional in a
negative order Sobolev space Hα, α ∈ [0, 1] where the choice α = 1 corresponds to the classical
Cahn-Hilliard equation whilst the choice α = 0 recovers the Allen-Cahn equation. It is shown
that the equation preserves mass for all positive values of fractional order and that it indeed
reduces the free energy. The well-posedness of the problem is established in the sense that the
H1-norm of the solution remains uniformly bounded. We then turn to the delicate question of
the L∞ boundedness of the solution and establish an L∞ bound for the FCHE in the case where
the non-linearity is a quartic polynomial. As a consequence of the estimates, we are able to
show that the Fourier-Galerkin method delivers a spectral rate of convergence for the FCHE in
the case of a semi-discrete approximation scheme. Finally, we present results obtained using
computational simulation of the FCHE for a variety of choices of fractional order α. We then
consider an alternative FCHE [3,5] in which the free energy functional involves a fractional order
derivative.

[1] J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform system. I. Interfacial Free
Energy, J. Chem. Phys, 28, 258–267 (1958)

[2] L. Caffarelli and E. Valdinoci, A Priori Bounds for solutions of non-local evoluation PDE,
Springer, Milan 2013.

[3] G. Palatucci and O. Savin, Local and global minimisers for a variational energy involving
a fractional norm, Ann. Mat. Pura Appl., 4, 673–718 (2014).

[4] M. Ainsworth and Z. Mao, Analysis and Approximation of a Fractional Cahn-Hilliard
Equation, (In review, 2016).

[5] M. Ainsworth and Z. Mao, Well-posedness of the Cahn-Hilliard Equation with Fractional
Free Energy and Its Fourier-Galerkin Discretization, (In review, 2017).

2



A Multiscale Hybrid Model of Tumor Growth
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J.T. Oden, ICES, U Texas at Austin, oden@ices.utexas.edu
T.E. Yankeelov, ICES, U Texas at Austin, thomas.yankeelov@utexas.edu

Cancer development results from a complex interplay of different phenomena that span a
wide range of time and length scales. Computational modeling may help to unfold the role of
multiple evolving factors that exist and interact in the tumor microenvironment. Understanding
these complex multiscale interactions is a crucial step towards developing effective drug thera-
pies.

We integrate here different modeling approaches in a hybrid multiscale avascular tumor
growth model. At the tissue level, we consider the dispersion of nutrients and growth factors
in the tumor microenvironment, which are modeled through reaction-diffusion equations. At
the cell level, we use an agent based model to describe normal and tumor cell dynamics, with
normal cells kept in homeostasis and cancer cells differentiate into quiescent, proliferative, apop-
totic, hypoxic and necrotic states. Cell movement is driven by the balance of a variety of forces
according to Newton’s second law, including those related to growth-induced stresses. Pheno-
typic transitions are mainly deterministic, although the switches from quiescent to apoptotic and
to proliferative states are stochastic. We integrate in each cell/agent a branch of the Epidermal
Growth Factor Receptor (EGFR) pathway which is known to be hyperactivated in about 30%
of all cancers. This intracellular mechanism regulates proliferative advantage in response to mi-
croenvironment stimuli. The EGFR pathway is modeled by a system of nonlinear differential
equations involving the chemical kinetics of 20 molecules, and the rates of change in the con-
centration of key molecules trigger the regulatory response. The bridge between cell and tissue
scales is built through the source/sink terms of the partial differential equations.

Our hybrid model is built in a modular way, enabling the investigation of the role of potential
different mechanisms at multiple scales on the tumor progression. This strategy allows the repre-
sentation of both the collective behavior due to cell assembly as well as microscopic intracellular
phenomena described by signal transduction pathways. Here, we investigate cell-proliferation-
decision-response impact on cancer progression. Computational simulations demonstrate that
the model can adequately describe some complex mechanisms of tumor dynamics, including
growth arrest in avascular tumors.
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Bridging Multiple Structural Scales with a Generalized
Finite Element Method

C. Armando Duarte
Department of Civil and Environmental Engineering

University of Illinois at Urbana-Champaign
caduarte@illinois.edu

http://gfem.cee.illinois.edu

Interactions among multiple spatial scales are pervasive in many engineering applications. Struc-
tural failure is often caused by the onset of localized damage like cracks or shear bands that are
orders of magnitude smaller than the structural dimensions. In this talk, we present a General-
ized Finite Element Method (GFEM) based on the solution of interdependent macro/global and
fine/local scale problems. The local problems focus on the resolution of fine-scale features of the
solution near regions with singularities or localized nonlinearities, while the global problem ad-
dresses the macro-scale behavior of the structure. Fine-scale solutions are accurately computed
in parallel using the h-version of the GFEM and embedded into the global solution space using
the partition of unity method. Thus, the proposed method does not rely on a-priori knowledge
about the solution of the problem. This GFEM enables accurate modeling of problems involving
nonlinear, multi-scale phenomena on macro-scale meshes that are orders of magnitude coarser
than those required by the FEM. Numerical examples demonstrate applications to the simulation
of propagating cohesive fractures, and to the analysis of structural connections (spot welds) in
built-up panels for the next-generation hypersonic aircraft currently under investigation at U.S.
Air Force Research Laboratories. They also show that the conditioning of the method is of the
same order as in the FEM and that it is controlled by the mesh size of the coarse scale dis-
cretization. Extensions of the method to three-dimensional simulations of multi-stage hydraulic
fracturing of gas and oil reservoirs are also discussed.
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Delayed Feedback Control Method for Calculating
Space-Time Periodic Solutions of 3D Viscoelastic Problems

U. Khristenko, Michelin and Ecole Polytechnique, Paris, khristen@lms.polytechnique.fr
P. Le Tallec∗, Ecole Polytechnique, Paris, patrick.letallec@polytechnique.edu

In industrial applications, in order to avoid the inversion of very large matrices, time periodic
states are often computed as the asymptotic limit solution of an initial value boundary value
problem with arbitrarily chosen initial data. This kind of problems can be faced, for instance,
in the cardiac contractions modeling [1]. Another example concerns the steady rolling of a
viscoelastic tyre [2] with a periodic sculpture. In this case, the stable state satisfies a ”rolling”
periodicity condition, including shifts both in time and space: the state u(x, t) at any point x is
the same that at the corresponding point observed at the next sculpture one time period T ago

u(t, x) = R−1ωT u(t− T,RωTx).

Above, Rθ denotes the rotation of angle θ and ω the rotation speed. Calculating such initial value
problems until the asymptotic limit may take a lot of time for ”viscous” problems, when memory
effects are very large. In such cases nonetheless, one is not interested in the evolution history,
but only in a fast access to the asymptotic limit cycle. Thus developing methods accelerating
convergence to this limit is of high interest.

Here, even if the asymptotic limit is periodic, the solution of the initial value evolution prob-
lem is not. The lack of periodicity of the calculated solution is then an extra information (obser-
vation) on which one can apply control techniques. In other words, we can modify the original
evolution problem through a feedback control term based on this observation error. In this frame-
work, the present work is dedicated to the development and validation of an optimal feedback
control minimizing the convergence time to the limit cycle.

First, we present an analytical analysis of an abstract linear evolution problem, and find
the solution to the modified (controlled) problem, based on the theory of delayed differential
equations [3] and using the Lambert W function [4]. Having studied the influence of the control
on the convergence rate, we propose then the optimal control, by optimizing the spectrum of
the problem and minimizing thus the convergence time. The resulting method is similar to the
feedback control methods, stabilizing unstable steady states [5,6]. It turns out that it can also be
mechanically interpreted as a correction of the present solution in proportion of the periodicity
errors which would be observed in the next periods in the absence of control.

We have also proved that the acceleration increases with the memory of the problem. So the
developed method might not be efficient for fast converging problems (which is not really of in-
terest) but becomes more and more efficient for the slowly converging problems. Unfortunately,
the optimal control term involves the exponential of the underlying operator, whose numerical
calculation induces a loss of sparsity and a high numerical cost. So a modified control term
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has been proposed, where the matrix exponential is replaced by a scalar while preserving the
acceleration rate, control which can then be applied to a nonlinear problem as well.

The developed method has been applied to two problems. In the first one, we consider a
2D disk heated with a source periodically moving along a circular path, which may be a simple
model problem for additive manufacturing. This problem corresponds exactly to the theoretical
framework. The second problem considers the steady rolling of a viscoelastic 3D tyre with
periodic sculpture. This problem is three dimensional and non-linear. Both problems have been
solved numerically with the finite element method, while comparing the controlled and non-
controlled solutions. The simulation results confirm the theoretical statements. Even when using
the scalar construction of the exponential, the method accelerates convergence to the limit cycle
at the rate predicted by the theory, and its efficiency increases with the size of the memory effects.

[1] P. Moireau. “Assimilation de données par filtrage pour les systèmes hyperboliques du
second ordre. Applications à la mécanique cardiaque”, PhD thesis, 2009.

[2] P. Le Tallec, C. Rahier. “ Numerical models of steady rolling for non-linear viscoelastic
structures in finite deformations”, International Journal for Numerical Methods in Engineering,
37(7), pp.1159–1186, 1994.

[3] R. Bellman, K.L. Cooke. “ Differential-difference equations”, 1963.
[4] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth. “On the LambertW

function”, Advances in Computational mathematics, 5(1), pp.329–359, 1996.
[5] P. Hovel, E. Schol. “Control of unstable steady states by time-delayed feedback methods”,

Physical Review E, 72(4), 046203, 2005.
[6] K. Pyragas. “ Analytical properties and optimization of time-delayed feedback control”,

Physical Review E, 66(2), 026207, 2002.
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Journey through Mechanics Research and Education:
A Personal Retrospective

J.N. Reddy
Department of Mechanical Engineering, Texas A&M University, College Station

jnreddy@tamu.edu (http://mechanics.tamu.edu)

This is a personal retrospective of the author’s journey through mechanics research and education
in the United States of America that began while the author was a Ph.D. student of Professor J.T.
Oden in 1970. The publication of a seminal paper on 14 primal and dual variational principles of
mechanics [1] and two books on mathematical theory of finite elements and variational principles
in theoretical mechanics with Professor Oden provided the inspiration and paved the way for
the author’s professional journey through composite materials and structures, penalty and least-
squares finite elements models of fluid flow, higher-order shell finite elements, and non-local
continuum theories.

The lecture will begin with an overview of the author’s highly-cited shear deformation and
layerwise theories for composite laminates [2,3], the least-squares finite element models of the
flows of viscous incompressible fluids [4], and a robust shell finite element [5]. Then overview
of the authors recent research on nonlocal elasticity and couple stress theories in formulating the
governing equations of functionally graded material beams and plates will be presented. Two
different nonlinear gradient elasticity theories that account for (a) geometric nonlinearity and (b)
microstructure-dependent size effects are revisited to establish the connection between them. The
first theory is based on modified couple stress theory and the second one is based on Srinivasa-
Reddy gradient elasticity theory [6]. These two theories are used to derive the governing equa-
tions of beams and plates. In addition, the graph-based finite element framework (GraFEA)
suitable for the study of damage in brittle materials will be discussed (see Khodabakhshi, Reddy,
and Srinivasa [7]). GraFEA stems from conventional finite element method by transforming it to
a network representation based on the study by Reddy and Srinivasa [8]. Figure 1(b-h) display
the evolution of cracks for a rectangular plate with an elliptic hole (a = 0.8, b = 0.2, W = 4,
L = 6, E = 3× 106, ν = 0.25, and εcritical = 0.005). The figures show that as the crack reaches
ends of the plate, some form of crack branching initiates near the ends.

Dedication. This lecture is dedicated to his teacher and mentor, Professor J.T. Oden, with sincere
gratitude, high respect, and love.

References

1 J.T. Oden and J.N. Reddy, “On dual-complementary variational principles in mathematical
physics,” Int. J. Engng Science, 12, pp. 1–29, 1974.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Evolution of the broken edges for a rectangular plate with an elliptic hole (a) Rectangular plate with an elliptic hole under the application
of displacement boundary conditions (b) I = 1 (c) I = 25 (d) I = 30 (e) I = 35 (f) I = 40 (g) I = 45 (h) I = 50

the failure criterion is imposed directly on the discrete body without inheriting it from a continuum. The cracks travel
perpendicular to the links (as opposed to most of the methods in the literature where crack grows along the interface
of the elements), therefore, crack branching and change in crack path is possible if only the mesh is refined enough to
capture it.

As illustrative examples, numerical results are presented for the case of rectangular plates with a circular and
elliptic holes. The results showed that GraFEM is capable of studying the evolution of damage within materials in a
straightforward manner. Thus, the present study is an introduction to GraFEM and a proof of concept of what GraFEM
is capable of predicting. Several non-trivial damage and fracture problems are to be solved in order to bring out the
power of the GrafEM proposed herein. In addition, validation of the method with experimental results is in the agenda
of the future works by the authors.
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authors declare that they have no conflict of interest.
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Figure 1: Evolution of the broken edges for a rectangular plate with an elliptic hole. (a) Rectangular plate
with an elliptic hole under the application of displacement boundary conditions. (b) I = 1 (c) I = 25 (d)
I = 30 (e) I = 35 (f) I = 40 (g) I = 45 (h) I = 50, where I denotes the number of links broken
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The Inequality Level Set Approach (ILS)
to Handle Variational Inequalities:

Application to Contact and Visco-plastic Fluids

N. Moës, Ecole Centrale de Nantes, nicolas.moes@ec-nantes.fr
N. Chevaugeon, Ecole Centrale de Nantes, nicolas.chevaugeon@ec-nantes.fr

M. Graveleau,Ecole Centrale de Nantes

The key idea of the Inequality Level Set approach (ILS) for variational inequalities is to locate
with a level set the domain over which the inequality reaches an equality. For contact problem, it
means that the main unknown is the contact zone. This is an important departure from classical
contact algorithm since at any iteration an explicit contact contour is known as a level set. A true
Newton-Raphson may thus be built with respect to the contact location. The derivative of the
energy with respect to the contact zone location has the meaning of a configurational force. For
frictionless contact it must be driven to zero to reach the exact contact zone, whereas in case of
adhesion the force must correspond to the adhesion level.

The main advantages of the ILS are :

• possibility to enrich with the the extended finite element approach (X-FEM) the contact
zone boundary to capture non-smoothness of the displacement field (higher order conver-
gence rate with respect to the mesh size is thus at hand)

• robustness in the iterative process since it is based on a full Newton-Raphson.

• achieve stability analysis of a given contact zone

• design reduced order modeling for contact

Examples of simulation of contact of membranes or deformable bodies on a rigid obstacle will
show the capabilities of the ILS. Also, we will discuss the capabilities of the ILS for visco-plastic
fluids.

[1] Bonfils, N., Chevaugeon, N., and Moës, N. “Treating volumetric inequality constraint in
a continuum media with a coupled X-FEM/level-set strategy”. CMAME, 205-208, pp. 1628,
2012.

[2] Graveleau, M., Chevaugeon, N., and Moës, N. “ The Inequality level-set approach to
handle contact: membrane case”. Advanced Modeling and Simulation in Engineering Sciences,
2, pp. 16, 2015.
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Some a Posteriori Error Estimators
for PDEs with Random Coefficients

F. Nobile∗, Institute of Mathematics, EPFL, Switzerland, fabio.nobile@epfl.ch
D. Guignard, Institute of Mathematics, EPFL, Switzerland, diane.guignard@epfl.ch
M. Picasso, Institute of Mathematics, EPFL, Switzerland, marco.picasso@epfl.ch

We consider Partial Differential Equations (PDEs) with uncertain parameters described as ran-
dom variables.

In the case of small uncertainties, we advocate a perturbation approach in which only the
deterministic solution corresponding to the nominal value of the parameters is computed by the
finite element method, eventually complemented by a correction term linear in the parameters.
We derive residual based a-posteriori error estimates, which quantify both the finite element error
and the error due to the perturbation method, in the case of an elliptic equation with random
parameters as well as the steady state Navier-Stokes equations on a randomly perturbed domain.

In the case of large uncertainties, we consider instead a sparse grids stochastic collocation
finite element method. We derive a residual-based a posteriori error estimate that provides upper
bounds on the two sources of error (finite element and stochastic collocation), in the special case
of an elliptic diffusion equation with a random coefficient that depends affinely on a finite number
of random variables. The error estimator on the stochastic component is then used to drive
an adaptive sparse grid algorithm which aims at circumventing the “curse of dimensionality”
inherent to tensor grids approximations. Several numerical examples are given to illustrate the
performance of the adaptive procedure.

[1] D. S. Guignard, F. Nobile and M. Picasso. A posteriori error estimation for the steady
Navier-Stokes equations in random domains, in CMAME, 313, pp. 483-511, 2017.

[2] D. S. Guignard, F. Nobile and M. Picasso. “A posteriori error estimations for elliptic
partial differential equations with small uncertainties”, in Num. Methods for PDEs, 32(1), pp.
175???212, 2016.

[3] D. S. Guignard, “A posteriori error estimation for partial differential equations with ran-
dom input data”, PhD thesis n. 7260, EPFL, Lausanne, 2016.
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The Inequality Level Set Approach (ILS)
Computing, Data, Models, Mathematics

– Gumbo or Salad?

Abani K. Patra

University at Buffalo (on leave) / Department of Energy, Office of Science

abani.patra@gmail.com

In honor of my dear teacher and Professor for life J. T. Oden

Modeling and reliable accurate predictions based on models is at the heart of much human
endeavor and in particular hazard risk analysis from extreme events that threaten life and prop-
erty. In this talk, I will review the development of predictive tools for analysis of hazard risks
that integrate developments in modeling, computing and numerical methodologies. The com-
plex physics, need to quantify uncertainties in models and parameters, and produce tools that
are scaleable, robust and reliable while being computationally efficient drive the need for inte-
grated development of mathematical and computational procedures. New methods for reliable
and accurate computation from adaptivity to parallel computing and uncertainty quantification
must all be developed and used. The availability of unprecedented levels of data from observa-
tion and simulations and invention of tools to make inferences from such large data sets adds
another very promising line of attack to this challenge. The key to a successful strategy is the art
of harnessing all of these methodologies in a consistent and comprehensive manner. Haphazard
juxtaposition of disparate elements is rarely. I will present an integrated vision that harnesses
all of these methodologies and over the last decade has resulted in a consistent set of integrated
tools for volcanological applications.
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On a Goal-oriented Finite Element Formulation
for the Estimation of Quantities of Interest

S. Prudhomme∗, Department of Mathematics and Industrial Engineering, Ecole Polytechnique
de Montréal, serge.prudhomme@polymtl.ca

K. Kergrene, Department of Mathematics and Industrial Engineering, Ecole Polytechnique de
Montréal, kenan.kergrene@polymtl.ca

M. Laforest, Department of Mathematics and Industrial Engineering, Ecole Polytechnique de
Montréal, marc.laforest@polymtl.ca

L. Chamoin, LMT, Ecole Normale Supérieure de Cachan, chamoin@lmt.ens-cachan.fr

We will present in this talk a finite element formulation of boundary-value problems that aims
at constructing approximations tailored towards the estimation of quantities of interest. The
main idea is to reformulate a boundary-value problem as a minimization problem that involves
inequality constraints on the error in the goal functionals so that the resulting model is capable of
delivering quantities of interest within some prescribed tolerance. Chaudhry et al. have proposed
in [1] a similar method in which constraints are enforced via a penalization approach. However,
an issue with that approach is concerned with the selection of suitable penalization parameters.
Our goal in this work aims at circumventing this difficulty by imposing the inequality constraints
through Lagrange multipliers using the Karush-Kuhn-Tucker (KKT) conditions. We will also
show how to design an adaptive strategy to construct adapted meshes based on a posteriori error
estimates. Such a paradigm represents a departure from classical goal-oriented approaches in
which one computes first the finite element solution and then adapts the mesh by controlling
the error with respect to quantities of interest using dual-based error estimates [2]. Numerical
examples will be presented in order to demonstrate the efficiency of the proposed approach. We
will also show how such a formulation can be applied to the construction of reduced models
using the so-called proper generalized decomposition (or low-rank approximation) method [3].
Preliminary work related to that topic has been presented in [4].

[1] J.H. Chaudhry, E.C. Cyr, K. Liu, T.A. Manteuffel, L.N. Olson, and L. Tang, “Enhancing
least-squares finite element methods through a quantity-of-interest”, SIAM Journal of Numerical
Analysis, 52(6), pp. 3085–3105, 2014.

[2] J.T. Oden and S. Prudhomme, “Goal-oriented error estimation and adaptivity for the finite
element method”, Computers and Mathematics with Applications, 41, 735–756, 2001.

[3] M. Billaud-Friess, A. Nouy, O. Zahm, “A tensor approximation method based on ideal
minimal residual formulations for the solution of high-dimensional problems”, ESAIM: Mathe-
matical Modelling and Numerical Analysis, 48(6), pp. 1777–1806, 2014.

[4] K. Kergrene, S. Prudhomme, L. Chamoin, M. Laforest. “Approximation of constrained
problems using the PGD method with application to pure Neumann problems”, Comput. Meth-
ods Appl. Mech. Engrg., 317, pp. 507–525, 2017.
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The Nonlinear Petrov-Galerkin Method:
Quasi-optimal Discretization in Banach Spaces

I. Muga, Inst. de Mathemáticas, Pontif. Univ. Católica de Valparaı́so, ignacio.muga@ucv.cl
K.G. van der Zee∗, Math. Sciences, Univ. of Nottingham, kg.vanderzee@nottingham.ac.uk

Is it possible to obtain near-best approximations to solutions of linear operator equations in a gen-
eral Banach-space setting? Can this be done with guaranteed stability? We address these ques-
tions by introducing nonstandard, nonlinear Petrov–Galerkin (NPG) discretizations [1]. These
methods are imperative for PDEs with rough data or nonsmooth solutions having discontinuities.

The NPG method builds on recent developments in Petrov–Galerkin and residual minimiza-
tion methods: It extends the seminal optimal Petrov–Galerkin methodology of Demkowicz and
Gopalakrishnan [2] to Banach spaces; it provides for a (monotone) nonlinear extension of the cor-
responding mixed formulation, cf. Dahmen et al [3]; and it extends the Lp residual-minimization
method of Guermond [4] to arbitrary dual Banach spaces.

The essential component in the NPG method is the (nonlinear) duality map, which is the
natural extension of the Riesz map (a Hilbert-space construct) to Banach spaces. Whenever the
residual is measured in a negative (Banach) Sobolev norm, a inexact version of NPG is needed
to discretely invert the duality map. We demonstrate the stability of the resulting inexact method
and prove a priori error estimates by extending a projection identity going back to Kato, cf. [5].

Two applications are presented: First we consider a non-Hilbert setting for the Laplace oper-
ator allowing for rough solutions /∈ H1, where discrete stability will hinge on the W 1,p-stability
of the H1

0 -projector. Then we focus on the advection-reaction PDE in a weak setting leading to
quasi-best approximations in Lp (1<p<∞). It is furthermore demonstrated that in the approxi-
mation of discontinuities, the notorious Gibbs phenomena, inherently present in the Hilbert case
(p = 2), is eliminated as p↘ 1.

[1] I. Muga, K. G. van der Zee. “Discretization of Linear Problems in Banach Spaces:
Residual Minimization, Nonlinear Petrov–Galerkin, and Monotone Mixed Methods”, ArXiv,
1511.04400 [math.NA].

[2] L. Demkowicz, J. Gopalakrishnan, “An overview of the Discontinuous Petrov Galerkin
method”, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial
Differential Equations: 2012 John H Barrett Memorial Lectures, X. Feng, O. Karakashian and
Y. Xing (eds.), pp. 149–180, Springer, (2014)

[3] W. Dahmen, C. Huang, C. Schwab, G. Welper, “Adaptive Petrov–Galerkin methods for
first order transport equations”, SIAM J. Numer. Anal., 50 (2012), pp. 2420–2445.

[4] J. L. Guermond, “A finite element technique for solving first-order PDEs in Lp”, SIAM J.
Numer. Anal., 42 (2004), pp. 714–737

[5] A. Stern, “Banach space projections and Petrov–Galerkin estimates”, Numer. Math., 130
(2015), pp. 125–133.
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Modeling and Simulation
of Advanced Manufacturing Processes

T. I. Zohdi ∗, Mech. Eng. Dept., zohdi@berkeley.edu

Within the last decade, several industrialized countries have stressed the importance of ad-
vanced manufacturing to their economies. Many of these plans have highlighted the development
of additive manufacturing techniques, such as 3D printing, which are still in their infancy. The
objective is to develop superior products, produced at lower overall operational costs. For these
goals to be realized, a deep understanding of the essential ingredients comprising the materials
involved in additive manufacturing is needed. The combination of rigorous material model-
ing theories, coupled with the dramatic increase of computational power can potentially play a
significant role in the analysis, control, and design of many emerging additive manufacturing
processes. Specialized materials and the precise design of their properties are key factors in the
processes. Specifically, particle-functionalized materials play a central role in this field, in three
main ways: (1) to endow filament-based materials by adding particles to a heated binder (2) to
“functionalize” inks by adding particles to freely flowing solvents and (3) to directly deposit par-
ticles, as dry powders, onto surfaces and then to heat them with a laser, e-beam or other external
source, in order to fuse them into place. The goal of these processes is primarily to build surface
structures, coatings, etc., which are extremely difficult to construct using classical manufacturing
methods. The objective of this presentation is to introduce the audience to basic modeling and
simulation techniques which can allow them to rapidly develop and analyze particulate-based
materials needed in new additive manufacturing processes, for example:

1. Modeling dynamics deposition of new inks, sprays and powders

2. Modeling multiphysical properties of depositions

3. Modeling laser processing

4. Revoxelization modeling of curing and residual stresses

5. Material performance evaluation-electromagnetics

The industrial goal is the development of additive-subtractive machines. This presentation em-
ploys two main methodologies: continuum and discrete element approaches. The materials as-
sociated with particles embedded in a continuous binder and are treated using continuum ap-
proaches. The materials associated with dry powders, which are of a discrete particulate charac-
ter, are analyzed using discrete element methods.

Background Context: Additive Manufacturing (AM) is usually defined as the process of
joining materials to make objects from 3D model data, typically layer upon layer, as opposed to
subtractive manufacturing methodologies, which remove material (American Society for Testing
and Materials, ASTM). One subclass of AM, so-called 3D Printing (3DP), has received a great
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Figure 2: LEFT: Typical printing ingredients: (a) Finely ground metallic powder (iron). (b)
Extruded PLA. BOTTOM (c) ABS pellets and (d) Coarsely ground steel flakes. MIDDLE: A
linkage schematic of a 3D printer. RIGHT: A multiphase droplet representation using the Dis-
crete Element Method.

deal of attention over the last few years. Typically such a process takes CAD drawings and
slices them into layers, printing layer by layer. 3DP was a 2.2 billion dollar industry in 2014,
with applications ranging from motor vehicles, consumer products, medical devices, military
hardware and the arts. In order for emerging additive approaches to succeed, such as the ones
mentioned, one must draw upon rigorous theory and computation to guide and simultaneously
develop design rules for the proper selection of particle, binder and solvent combinations for
upscaling to industrial manufacturing levels.
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